Chapter 3: Q56E (page 173)
53-56 Find \(y'\) and \(y''\).
56. \(y = {e^{{e^x}}}\)
Short Answer
The value of \(y'\) is \({e^{{e^x} + x}}\).
The value of \(y''\) is \({e^{{e^x} + x}}\left( {{e^x} + 1} \right)\).
Chapter 3: Q56E (page 173)
53-56 Find \(y'\) and \(y''\).
56. \(y = {e^{{e^x}}}\)
The value of \(y'\) is \({e^{{e^x} + x}}\).
The value of \(y''\) is \({e^{{e^x} + x}}\left( {{e^x} + 1} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
14. \(y = {\log _{10}}\sec x\)
Find the derivative of the function:
\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)
Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
1. \(\mathop {lim}\limits_{x \to 1} \frac{{{x^2} - 1}}{{{x^2} - x}}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
Find the derivative of the function.
20. \(A\left( r \right) = \sqrt r \cdot {e^{{r^2} + 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.