Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

53-56 Find \(y'\) and \(y''\).

56. \(y = {e^{{e^x}}}\)

Short Answer

Expert verified

The value of \(y'\) is \({e^{{e^x} + x}}\).

The value of \(y''\) is \({e^{{e^x} + x}}\left( {{e^x} + 1} \right)\).

Step by step solution

01

Step 1:Find the value of \(y'\) 

Find the value of \(y'\) for the equation\(y = {e^{{e^x}}}\).

\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{e^{{e^x}}}} \right)\\ &= {e^{{e^x}}}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{e^x}} \right)\\ &= {e^{{e^x}}} \cdot {e^x}\\& = {e^{{e^x} + x}}\end{aligned}\)

So, the value of \(y'\) is \({e^{{e^x} + x}}\).

02

Find the value of \(y''\)

Find the value of \(y''\) from the equation \(y' = {e^{{e^x} + x}}\) using the quotient rule.

\(\begin{aligned}y'' &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{e^{{e^x} + x}}} \right)\\ &= \left( {{e^{{e^x} + x}}} \right) \cdot \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{e^x} + x} \right)\\ &= {e^{{e^x} + x}}\left( {{e^x} + 1} \right)\end{aligned}\)

So, the value of \(y''\) is \({e^{{e^x} + x}}\left( {{e^x} + 1} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free