Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).

Short Answer

Expert verified

It is proved that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).

Step by step solution

01

Write the formula of inverse hyperbolic functions

\(\frac{d}{{dx}}\left( {{{\tanh }^{ - 1}}x} \right) = \frac{1}{{{x^2} - 1}}\)

02

Find the derivative of the function

Differentiate the function\(\arctan \left( {\tanh x} \right)\)with respect to \(x\) and use \({\cosh ^2}x + {\sinh ^2}x = \cosh 2x\) to simplify.

\(\begin{aligned}\frac{d}{{dx}}\arctan \left( {\tanh x} \right) & = \frac{1}{{1 + {{\left( {\tanh x} \right)}^2}}}\frac{d}{{dx}}\left( {\tanh x} \right)\\ & = \frac{{{{{\mathop{\rm sech}\nolimits} }^2}x}}{{1 + {{\tanh }^2}x}}\\ & = \frac{{\frac{1}{{{{\cosh }^2}x}}}}{{1 + \frac{{{{\sinh }^2}x}}{{{{\cosh }^2}x}}}}\\ & = \frac{1}{{{{\cosh }^2}x + {{\sinh }^2}x}}\\ & = \frac{1}{{\cosh 2x}}\\ & = {\mathop{\rm sech}\nolimits} 2x\end{aligned}\)

Hence, it is proved that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free