Chapter 3: Q55E (page 173)
Show that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).
Short Answer
It is proved that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).
Chapter 3: Q55E (page 173)
Show that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).
It is proved that \(\frac{d}{{dx}}\arctan \left( {\tanh x} \right) = {\mathop{\rm sech}\nolimits} 2x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
Find the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
Find the derivative of the function.
35. \(G\left( x \right) = {4^{C/x}}\)
7-52: Find the derivative of the function
7. \(f\left( x \right) = {\left( {2{x^3} - 5{x^2} + 4} \right)^5}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.