Given that \(y = {\left( {\sin x} \right)^{\ln x}}\).
Taking log both side to get,
\(\ln y = \ln x\ln \left( {\sin x} \right)\)
Now differentiating with respect to \(x\) we get,
\(\begin{aligned}{c}\frac{1}{y}\frac{{dy}}{{dx}}&= \frac{d}{{dx}}\left( {\ln x\ln \sin x} \right)\\\frac{{dy}}{{dx}}&= y\left( {\ln x\frac{d}{{dx}}\left( {\ln \sin x} \right) + \ln \sin x\frac{d}{{dx}}\ln x} \right)\\&= {\left( {\sin x} \right)^{\ln x}}\left( {\frac{{\ln x}}{{\sin x}}\cos x + \frac{{\ln \sin x}}{x}} \right)\\&= {\left( {\sin x} \right)^{\ln x}}\left( {\ln x\cot x + \frac{{\ln \sin x}}{x}} \right)\end{aligned}\)
Hence \(\frac{{dy}}{{dx}} = {\left( {\sin x} \right)^{\ln x}}\left( {\ln x\cot x + \frac{{\ln \sin x}}{x}} \right)\).