Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

53-56 Find \(y'\) and \(y''\).

54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)

Short Answer

Expert verified

The value of \(y'\) is \(\frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{2\sqrt x }}\).

The value of \(y''\) is \(\frac{{3\left( {x - 1} \right)}}{{4{x^{\frac{3}{2}}}}}\).

Step by step solution

01

Step 1:Find the value of \(y'\)

Find the value of \(y'\) for the equation\(y = {\left( {1 + \sqrt x } \right)^3}\).

\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{{\left( {1 + \sqrt x } \right)}^3}} \right)\\ &= 3{\left( {1 + \sqrt x } \right)^2} \cdot \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {1 + \sqrt x } \right)\\ &= \frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{2\sqrt x }}\end{aligned}\)

So, the value of \(y'\) is \(\frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{2\sqrt x }}\).

02

Find the value of \(y''\)

Find the value of \(y''\) from the equation \(y' = \frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{2\sqrt x }}\) using the quotient rule.

\(\begin{aligned}y'' &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{2\sqrt x }}} \right)\\ &= \frac{{2\sqrt x \cdot \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {3{{\left( {1 + \sqrt x } \right)}^2}} \right) - 3{{\left( {1 + \sqrt x } \right)}^2} \cdot \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {2\sqrt x } \right)}}{{{{\left( {2\sqrt x } \right)}^2}}}\\ &= \frac{{2\sqrt x \left( {6\left( {1 + \sqrt x } \right)\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {1 + \sqrt x } \right)} \right) - 3{{\left( {1 + \sqrt x } \right)}^2} \times \frac{2}{{2\sqrt x }}}}{{4x}}\\ &= \frac{{12\sqrt x \left( {1 + \sqrt x } \right) \times \frac{1}{{2\sqrt x }} - \frac{{3{{\left( {1 + \sqrt x } \right)}^2}}}{{\sqrt x }}}}{{4x}}\\ &= \frac{{6 + 6\sqrt x - \frac{{3\left( {1 + x + 2\sqrt x } \right)}}{{\sqrt x }}}}{{4x}}\\ &= \frac{{6\sqrt x + 6x - 3 - 3x - 6\sqrt x }}{{4{x^{\frac{3}{2}}}}}\\ &= \frac{{3\left( {x - 1} \right)}}{{4{x^{\frac{3}{2}}}}}\end{aligned}\)

So, the value of \(y''\) is \(\frac{{3\left( {x - 1} \right)}}{{4{x^{\frac{3}{2}}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free