Chapter 3: Q54E (page 173)
45-60: Find the limit.
54. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x\sin 5x}}{{{x^2}}}\)
Short Answer
The required value is \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x\sin 5x}}{{{x^2}}} = 15\).
Chapter 3: Q54E (page 173)
45-60: Find the limit.
54. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x\sin 5x}}{{{x^2}}}\)
The required value is \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x\sin 5x}}{{{x^2}}} = 15\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function.
42. \(y = {e^{{\rm{sin}}2x}} + {\rm{sin}}\left( {{e^{2x}}} \right)\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
Find the derivative of the function.
38. \(g\left( x \right) = {e^{ - x}}{\rm{cos}}\left( {{x^2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.