Chapter 3: Q53E (page 173)
45-60: Find the limit.
53. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{5{x^3} - 4x}}\)
Short Answer
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{5{x^3} - 4x}} = - \frac{3}{4}\)
Chapter 3: Q53E (page 173)
45-60: Find the limit.
53. \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{5{x^3} - 4x}}\)
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{5{x^3} - 4x}} = - \frac{3}{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
17. \(T\left( z \right) = {2^x}{\log _2}z\)
Find equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
Differentiate the function.
11.\(F\left( t \right) = {\left( {\ln t} \right)^2}\sin t\)
Find the derivative of the function
15. \(g\left( x \right) = {e^{{x^2} - x}}\)
Find the derivative of the function.
36. \(U\left( y \right) = {\left( {\frac{{{y^4} + 1}}{{{y^2} + 1}}} \right)^5}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.