Since the hour hand of a clock takes a round around once every \(12\) hour and in radians \(\frac{{2\pi }}{{12}} = \frac{\pi }{6}\;{\rm{rad}}/{\rm{h}}\).
Also, the minute hand of a clock takes a round around once an hour and in radians \(2\pi \;{\rm{rad}}/{\rm{h}}\). The angle between them is \(\theta \) at the rate is shown below:
\(\begin{aligned}\frac{{d\theta }}{{dt}} &= \frac{\pi }{6} - 2\pi \\ &= - \frac{{11\pi }}{6}\;{\rm{rad}}/{\rm{h}}\end{aligned}\)
Apply the Law of Cosines.
\(\begin{aligned}{l^2} &= {4^2} + {8^2} - 2\left( 4 \right)\left( 8 \right)\cos \theta \\ &= 80 - 64\cos \theta .............\left( 1 \right)\end{aligned}\)
Differentiate the above equation w.r.t \(t\).
\(\begin{aligned}\frac{d}{{dt}}\left( {{l^2}} \right) &= \frac{d}{{dt}}\left( {80 - 64\cos \theta } \right)\\2l\frac{{dl}}{{dt}} &= - 64\left( { - \sin \theta } \right)\frac{{d\theta }}{{dt}}............\left( 2 \right)\end{aligned}\)
At \(1:00\) the angle \(\theta \)between the two hands is one-fifth of the circle then \(\frac{{2\pi }}{{12}} = \frac{\pi }{6}\;{\rm{rad}}\)
At \(1:00\), find \(l\) using equation \(\left( 1 \right)\).
\(\begin{array}{c}l = \sqrt {80 - 64\cos \left( {\frac{\pi }{6}} \right)} \\ = \sqrt {80 - 32\sqrt 3 } \end{array}\)
Substitute the above values in the equation \(\left( 2 \right)\).
\(\begin{aligned}2\left( {\sqrt {80 - 32\sqrt 3 } } \right)\frac{{dl}}{{dt}} &= - 64\left( { - \sin \left( {\frac{\pi }{6}} \right)} \right)\left( { - \frac{{11\pi }}{6}} \right)\\\frac{{dl}}{{dt}} &= \frac{{64\left( {\frac{1}{2}} \right)\left( { - \frac{{11\pi }}{6}} \right)}}{{2\left( {\sqrt {80 - 32\sqrt 3 } } \right)}}\\ &= - \frac{{88\pi }}{{3\sqrt {80 - 32\sqrt 3 } }}\\ \approx - 18.6\;{\rm{mm}}/{\rm{h}}\\ \approx 0.005\;{\rm{mm}}/{\rm{s}}\end{aligned}\)
Thus, At \(1:00\) the distance between the tips of the hands decreases at a rate of \(0.005\;{\rm{mm}}/{\rm{s}}\).