Given that \(Q\left( x \right) = \frac{{F\left( x \right)}}{{G\left( x \right)}}\).
Then we get by differentiating,
\(Q'\left( x \right) = \frac{{G\left( x \right)F'\left( x \right) - F\left( x \right)G'\left( x \right)}}{{{{\left( {G\left( x \right)} \right)}^2}}}\).
Now to find \(Q'\left( 7 \right)\) we have to find \(F'\left( 7 \right)\) and \(G'\left( 7 \right)\) first.
Since the line segment with the points \(\left( {3,F\left( 3 \right)} \right)\) and \(\left( {7,F\left( 7 \right)} \right)\) passing through the point \(\left( {7,F\left( 7 \right)} \right)\) so the derivative of \(F\) at the point \(x = 7\) will be,
\(\begin{aligned}F'\left( 7 \right) & = \frac{{F\left( 7 \right) - f\left( 3 \right)}}{4}\\ & = \frac{{5 - 4}}{4}\\ & = \frac{1}{4}\end{aligned}\)
Since for the graph \(G\) line segment with \(\left( {4,G\left( 4 \right)} \right)\) and \(\left( {7,G\left( 7 \right)} \right)\) passing through the point \(\left( {7,G\left( 7 \right)} \right)\), so the slope at \(x = 7\) will be,
\(\begin{aligned}G'\left( 7 \right) & = \frac{{G\left( 7 \right) - G\left( 4 \right)}}{3}\\ & = \frac{{1 - 3}}{3}\\ & = - \frac{2}{3}\end{aligned}\)
Now since \(F\left( 7 \right) = 5\) and \(G\left( 7 \right) = 1\) so derivative of the function \(Q\) at the point \(x = 7\) will be,
\(\begin{aligned}Q'\left( 7 \right) & = \frac{{G\left( 7 \right)F'\left( 7 \right) - F\left( 7 \right)G'\left( 7 \right)}}{{{{\left( {G\left( 7 \right)} \right)}^2}}}\\ & = \frac{{1 \times \frac{1}{4} - 5 \times \left( { - \frac{2}{3}} \right)}}{1}\\ & = \frac{1}{4} + \frac{{10}}{3}\\ & = \frac{{43}}{{12}}\end{aligned}\)
Hence \(Q'\left( 7 \right) = \frac{{43}}{{12}}\) .