The derivative of the equation \(y = {\sin ^3}\left( {\cos \left( {{x^2}} \right)} \right)\).
\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{{\sin }^3}\left( {\cos \left( {{x^2}} \right)} \right)} \right)\\ &= 3{\sin ^2}\left( {\cos \left( {{x^2}} \right)} \right) \cdot \cos \left( {\cos \left( {{x^2}} \right)} \right) \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\cos \left( {{x^2}} \right)} \right)\\ &= 3{\sin ^2}\left( {\cos \left( {{x^2}} \right)} \right) \cdot \cos \left( {\cos \left( {{x^2}} \right)} \right) \times \left( { - \sin \left( {{x^2}} \right)} \right) \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{x^2}} \right)\\ &= - 3\sin \left( {{x^2}} \right){\sin ^2}\left( {\cos \left( {{x^2}} \right)} \right)\cos \left( {\cos \left( {{x^2}} \right)} \right)\left( {2x} \right)\\ &= - 6x\sin \left( {{x^2}} \right){\sin ^2}\left( {\cos \left( {{x^2}} \right)} \right)\cos \left( {\cos \left( {{x^2}} \right)} \right)\end{aligned}\)
Thus, the derivative of the given equation is \( - 6x\sin \left( {{x^2}} \right){\sin ^2}\left( {\cos \left( {{x^2}} \right)} \right)\cos \left( {\cos \left( {{x^2}} \right)} \right)\).