Assume the distance between the runner and the friend as \(l\). Apply the Law of Cosines and solve as shown below:
\(\begin{aligned}{l^2} &= {200^2} + {100^2} - 2\left( {200} \right)\left( {100} \right)\cos \theta \\ &= 50000 - 40000\cos \theta .............\left( 1 \right)\end{aligned}\)
Differentiate the above equation w.r.t \(t\).
\(\begin{aligned}\frac{d}{{dt}}\left( {{l^2}} \right) &= \frac{d}{{dt}}\left( {50000 - 40000\cos \theta } \right)\\2l\frac{d}{{dt}} &= - 40000\left( { - \sin \theta } \right)\frac{{d\theta }}{{dt}}............\left( 2 \right)\end{aligned}\)
Apply the formula of the length of the arc on the circle we have,
\(\begin{aligned}D &= 100\theta \\\theta &= \frac{1}{{100}}D\end{aligned}\)
Differentiate the above equation w.r.t \(t\).
\(\begin{aligned}\frac{{d\theta }}{{dt}} &= \frac{1}{{100}}\frac{{dD}}{{dt}}\\ &= \frac{1}{{100}}\left( 7 \right)\\ &= \frac{7}{{100}}\end{aligned}\)
Now find \(\sin \theta \) when \(l = 200\) to put it into the equation \(\left( 1 \right)\).
\(\begin{aligned}{200^2} &= 50000 - 40000\cos \theta \\400 &= 50000 - 40000\cos \theta \\\cos \theta &= \frac{1}{4}\end{aligned}\)
On applying trigonometric identity we get,
\(\begin{aligned}{\sin ^2}\theta + {\cos ^2}\theta & = 1\\{\sin ^2}\theta + \left( {\frac{1}{4}} \right) &= 1\\\sin \theta &= \sqrt {1 - \frac{1}{4}} \\\sin \theta &= \frac{{\sqrt {15} }}{4}\end{aligned}\)
Put \(\sin \theta = \frac{{\sqrt {15} }}{4}\), \(l = 200\)and \(\frac{{d\theta }}{{dt}} = \frac{7}{{100}}\) in equation \(\left( 2 \right)\).
\(\begin{aligned}2\left( {200} \right)\frac{{dl}}{{dt}} &= \left( {40000} \right)\frac{{\sqrt {15} }}{4}\left( {\frac{7}{{100}}} \right)\\\frac{{dl}}{{dt}} &= \frac{{7\sqrt {15} }}{4}\\ \approx 6.78\;{\rm{m/sec}}\end{aligned}\)
Thus, the distance between the friends changes when the distance between them is \(200\) m is about \(6.78\;{\rm{m/sec}}\).