The derivative of the equation \(y = \cos \sqrt {\sin \left( {\tan \pi x} \right)} \).
\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\rm{d}}}{{{\rm{d}}\theta }}\left( {\cos \sqrt {\sin \left( {\tan \pi x} \right)} } \right)\\ &= - \sin \sqrt {\sin \left( {\tan \pi x} \right)} \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\sqrt {\sin \left( {\tan \pi x} \right)} } \right)\\ &= - \sin \sqrt {\sin \left( {\tan \pi x} \right)} \times \frac{1}{{2\sqrt {\sin \left( {\tan \pi x} \right)} }} \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\sin \left( {\tan \pi x} \right)} \right)\\ &= \frac{{ - \sin \sqrt {\sin \left( {\tan \pi x} \right)} }}{{2\sqrt {\sin \left( {\tan \pi x} \right)} }} \times \left( {\cos \left( {\tan \pi x} \right)} \right) \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\tan \pi x} \right)\\ &= \frac{{ - \sin \sqrt {\sin \left( {\tan \pi x} \right)} \left( {\cos \left( {\tan \pi x} \right)} \right)}}{{2\sqrt {\sin \left( {\tan \pi x} \right)} }} \times {\sec ^2}\pi x \times \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\pi x} \right)\\ &= \frac{{ - \pi \sin \sqrt {\sin \left( {\tan \pi x} \right)} \left( {\cos \left( {\tan \pi x} \right)} \right){{\sec }^2}\pi x}}{{2\sqrt {\sin \left( {\tan \pi x} \right)} }}\end{aligned}\)
Thus, the derivative of the given equation is\(\frac{{ - \pi \sin \sqrt {\sin \left( {\tan \pi x} \right)} \left( {\cos \left( {\tan \pi x} \right)} \right){{\sec }^2}\pi x}}{{2\sqrt {\sin \left( {\tan \pi x} \right)} }}\).