The derivative of the equation \(y = \sin \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\).
\(\begin{aligned}\frac{{{\rm{d}}y}}{{{\rm{d}}\theta }} &= \frac{{\rm{d}}}{{{\rm{d}}\theta }}\left( {\sin \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)} \right)\\ &= \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right) \times \frac{{\rm{d}}}{{{\rm{d}}\theta }}\left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\\ &= \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)} \right) \times \frac{{\rm{d}}}{{{\rm{d}}\theta }}\left( {\theta + \cos \theta } \right)\\ &= \cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)} \right) \times \left( {1 - \sin \theta } \right)\end{aligned}\)
Thus, the derivative of the given equation is \(\cos \left( {\theta + \tan \left( {\theta + \cos \theta } \right)} \right)\left( {1 + {{\sec }^2}\left( {\theta + \cos \theta } \right)} \right) \times \left( {1 - \sin \theta } \right)\).