Given that \(f\left( x \right) = \cos 2x\) and the point is \(a = \frac{\pi }{6}\).
Now \(f'\left( x \right) = - 2\sin 2x\). Hence slope of the curve at \(a = \frac{\pi }{6}\) is, \(f'\left( {\frac{\pi }{6}} \right) = - 2\sin \frac{\pi }{3} = - \sqrt 3 \).
Now the equation of the tangent line at \(\left( {\frac{\pi }{6},f\left( {\frac{\pi }{6}} \right)} \right)\) is,
\(\begin{aligned}y &= f\left( {\frac{\pi }{6}} \right) + f'\left( {\frac{\pi }{6}} \right)\left( {x - \frac{\pi }{6}} \right)\\ &= \frac{1}{2} + \left( { - \sqrt 3 } \right)\left( {x - \frac{\pi }{6}} \right)\\ &= \frac{1}{2} - \sqrt 3 x + \frac{{\sqrt 3 \pi }}{6}\end{aligned}\)
Hence the linear approximation is \(L\left( x \right) = - \sqrt 3 x + \frac{{\sqrt 3 \pi }}{6} + \frac{1}{2}\).