Given that \(f\left( x \right) = \frac{{h\left( x \right)}}{x}\).
Differentiating the function, we get
\(\begin{aligned}f'\left( x \right) & = \frac{d}{{dx}}\left( {\frac{{h\left( x \right)}}{x}} \right)\\ & = \frac{{x\frac{d}{{dx}}h\left( x \right) - h\left( x \right)\frac{d}{{dx}}x}}{{{x^2}}}\\ & = \frac{{xh'\left( x \right) - h\left( x \right)}}{{{x^2}}}\end{aligned}\)
Substitute 2 for x into the function of \(f'\left( x \right)\) to determine \(f'\left( 2 \right)\), that is, \({\left. {\frac{d}{{dx}}\left( {\frac{{h\left( x \right)}}{x}} \right)} \right|_{x = 2}}\).
\(\begin{aligned}f'\left( 2 \right) & = \frac{{2h'\left( 2 \right) - h\left( 2 \right)}}{4}\\{\left. {\frac{d}{{dx}}\left( {\frac{{h\left( x \right)}}{x}} \right)} \right|_{x = 2}} & = \frac{{2 \times \left( { - 3} \right) - 4}}{4}\\ & = \frac{{ - 10}}{4}\\ & = - 2.5\end{aligned}\).
Therefore, \({\left. {\frac{d}{{dx}}\left( {\frac{{h\left( x \right)}}{x}} \right)} \right|_{x = 2}} = - 2.5\).