Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the derivative of the function.

48. \(y = {2^{{3^{{4^x}}}}}\)

Short Answer

Expert verified

The derivative of the function is \(\left( {{\rm{ln}}2} \right)\left( {{\rm{ln}}3} \right)\left( {{\rm{ln}}4} \right){4^x}{3^{{4^x}}}{2^{{3^{{4^x}}}}}\), that is, \(y'\left( x \right) = \left( {{\rm{ln}}2} \right)\left( {{\rm{ln}}3} \right)\left( {{\rm{ln}}4} \right){4^x}{3^{{4^x}}}{2^{{3^{{4^x}}}}}\).

Step by step solution

01

Use the Chain rule

According to the chain rule, \(F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\), where \(F\left( x \right) = f\left( {g\left( x \right)} \right)\) and \(f\) is differentiable at \(g\left( x \right)\) and use the formula for \(\frac{d}{{dx}}\left( {{b^x}} \right) = {b^x}{\rm{ln}}b\).

Differentiate the given function with respect to \(x\) by using the chain rule:

\(\begin{aligned}y' &= \frac{d}{{dx}}\left( {{2^{{3^{{4^x}}}}}} \right)\\ &= {2^{{3^{{4^x}}}}}\left( {{\rm{ln}}2} \right)\frac{d}{{dx}}\left( {{3^{{4^x}}}} \right)\end{aligned}\)

02

Use the Chain rule

Again, apply the chain rule and simplify.

\(\begin{aligned}y'\left( x \right) &= {2^{{3^{{4^x}}}}}\left( {{\rm{ln}}2} \right){3^{{4^x}}}\left( {{\rm{ln}}3} \right)\frac{d}{{dx}}\left( {{4^x}} \right)\\ &= {2^{{3^{{4^x}}}}}\left( {{\rm{ln}}2} \right){3^{{4^x}}}\left( {{\rm{ln}}3} \right){4^x}\left( {{\rm{ln}}4} \right)\\ &= \left( {{\rm{ln}}2} \right)\left( {{\rm{ln}}3} \right)\left( {{\rm{ln}}4} \right){4^x}{3^{{4^x}}}{2^{{3^{{4^x}}}}}\end{aligned}\)

Thus, the derivative of the function is \(\left( {{\rm{ln}}2} \right)\left( {{\rm{ln}}3} \right)\left( {{\rm{ln}}4} \right){4^x}{3^{{4^x}}}{2^{{3^{{4^x}}}}}\), that is, \(y'\left( x \right) = \left( {{\rm{ln}}2} \right)\left( {{\rm{ln}}3} \right)\left( {{\rm{ln}}4} \right){4^x}{3^{{4^x}}}{2^{{3^{{4^x}}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free