Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

39-42 Find \(y''\) by implicit differentiation/ Simplify where possible.

42. \({x^{\bf{3}}} - {y^{\bf{3}}} = {\bf{7}}\)

Short Answer

Expert verified

The value of \(y''\) is \( - \frac{{14x}}{{{y^5}}}\).

Step by step solution

01

Differentiate the given equation with respect to x

Differentiate the equation \({x^3} - {y^3} = 7\) on both sides.

\(\begin{aligned}{x^3} - {y^3} &= 7\\3{x^2} - 3{y^2}\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}}} \right) &= 0\\\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{{x^2}}}{{{y^2}}}\end{aligned}\)

02

Find the value of \(y''\)

Find the value of \(y''\) or \(\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}}\) by differentiating the equation \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{{{x^2}}}{{{y^2}}}\).

\(\begin{aligned}\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{{x^2}}}{{{y^2}}}} \right)\\ &= \frac{{{y^2}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{x^2}} \right) - {x^2}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{y^2}} \right)}}{{{y^4}}}\\ &= \frac{{{y^2}\left( {2x} \right) - {x^2}\left( {2y} \right)\frac{{{\rm{d}}y}}{{{\rm{d}}x}}}}{{{y^4}}}\end{aligned}\)

Solve further,

\(\begin{aligned}\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}} &= \frac{{2x{y^2} - {x^2}\left( {2y} \right)\left( {\frac{{{x^2}}}{{{y^2}}}} \right)}}{{{y^3}}}\\ &= \frac{{2x\left( {{y^3} - {x^3}} \right)}}{{{y^5}}}\\ &= \frac{{2x\left( { - 7} \right)}}{{{y^5}}}\\ &= - \frac{{14x}}{{{y^5}}}\end{aligned}\)

So, the value of \(y''\) is \( - \frac{{14x}}{{{y^5}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free