Find the value of \(y''\) or \(\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}}\) by differentiating the equation \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{{\sin x}}{{\cos y}}\).
\(\begin{aligned}\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{\sin x}}{{\cos y}}} \right)\\ &= \frac{{\cos y\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\sin x} \right) - \sin x\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\cos y} \right)}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{\cos y\cos x + \sin x\sin y\frac{{{\rm{d}}y}}{{{\rm{d}}x}}}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{\cos y\cos x + \sin x\sin y\left( {\frac{{\sin x}}{{\cos y}}} \right)}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{{{\cos }^2}y\cos x + \sin y{{\sin }^2}x}}{{{{\left( {\cos y} \right)}^3}}}\end{aligned}\)
So, the value of \(y''\) is \(\frac{{{{\cos }^2}y\cos x + \sin y{{\sin }^2}x}}{{{{\left( {\cos y} \right)}^3}}}\).