Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

39-42 Find \(y''\) by implicit differentiation/ Simplify where possible.

41. \({\bf{sin}}\,y + {\bf{cos}}x = {\bf{1}}\)

Short Answer

Expert verified

The value of \(y''\) is \(\frac{{{{\cos }^2}y\cos x + \sin y{{\sin }^2}x}}{{{{\left( {\cos y} \right)}^3}}}\).

Step by step solution

01

Differentiate the given equation with respect to x

Differentiate the equation \(\sin y + \cos x = 1\) on both sides.

\(\begin{aligned}\cos y\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}}} \right) - \sin x &= 0\\\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= \frac{{\sin x}}{{\cos y}}\end{aligned}\)

02

Find the value of \(y''\)

Find the value of \(y''\) or \(\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}}\) by differentiating the equation \(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{{\sin x}}{{\cos y}}\).

\(\begin{aligned}\frac{{{{\rm{d}}^2}y}}{{{\rm{d}}{x^2}}} &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{\sin x}}{{\cos y}}} \right)\\ &= \frac{{\cos y\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\sin x} \right) - \sin x\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\cos y} \right)}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{\cos y\cos x + \sin x\sin y\frac{{{\rm{d}}y}}{{{\rm{d}}x}}}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{\cos y\cos x + \sin x\sin y\left( {\frac{{\sin x}}{{\cos y}}} \right)}}{{{{\left( {\cos y} \right)}^2}}}\\ &= \frac{{{{\cos }^2}y\cos x + \sin y{{\sin }^2}x}}{{{{\left( {\cos y} \right)}^3}}}\end{aligned}\)

So, the value of \(y''\) is \(\frac{{{{\cos }^2}y\cos x + \sin y{{\sin }^2}x}}{{{{\left( {\cos y} \right)}^3}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free