Chapter 3: Q41 (page 173)
Find the derivative. Simplify where possible.
41.\(f\left( x \right) = \tanh \sqrt x \)
Short Answer
The derivative is \(f'\left( x \right) = \frac{{{{{\mathop{\rm sech}\nolimits} }^2}\sqrt x }}{{2\sqrt x }}\).
Chapter 3: Q41 (page 173)
Find the derivative. Simplify where possible.
41.\(f\left( x \right) = \tanh \sqrt x \)
The derivative is \(f'\left( x \right) = \frac{{{{{\mathop{\rm sech}\nolimits} }^2}\sqrt x }}{{2\sqrt x }}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function.
41. \(y = {\rm{si}}{{\rm{n}}^2}\left( {{x^2} + 1} \right)\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Use the method of Exercise 57 to compute \(Q'\left( {\bf{0}} \right)\), where
\(Q\left( x \right) = \frac{{{\bf{1}} + x + {x^{\bf{2}}} + x{e^x}}}{{{\bf{1}} - x + {x^{\bf{2}}} - x{e^x}}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
2. \(\mathop {lim}\limits_{x \to 2} \frac{{{x^2} + x - 6}}{{x - 2}}\).
Extended product rule: The product rule can be extended to the product of three functions.
(a)Use the product rule twice to prove that if f, g, and h are differentiable, then \(\left( {fgh} \right)' = f'gh + fg'h + fgh'\).
(b)Taking \(f = g = h\) in part (a), show that
\(\frac{{\bf{d}}}{{{\bf{d}}x}}{\left( {f\left( x \right)} \right)^{\bf{3}}} = {\bf{3}}{\left( {f\left( x \right)} \right)^{\bf{2}}}f'\left( x \right)\)
(c)Use part (b) to differentiate \(y = {e^{{\bf{3}}x}}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.