Chapter 3: Q40E (page 173)
Find an equation of the tangent line to the curve at the given point.
40. \(y = \sqrt[4]{x} - x,\;\;\;\;\;\;\;\left( {1,0} \right)\)
Short Answer
The required equation is \(y = - \frac{3}{4}x + \frac{3}{4}\).
Chapter 3: Q40E (page 173)
Find an equation of the tangent line to the curve at the given point.
40. \(y = \sqrt[4]{x} - x,\;\;\;\;\;\;\;\left( {1,0} \right)\)
The required equation is \(y = - \frac{3}{4}x + \frac{3}{4}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function:
\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
4. \(\mathop {lim}\limits_{x \to 0} \frac{{sin4x}}{{tan5x}}\).
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
5.\(\mathop {\lim }\limits_{t \to 0} \frac{{{e^{2x}} - 1}}{{\sin t}}\).
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
33.\(f\left( x \right) = \frac{x}{{{x^2} - 1}}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.