Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Differentiate the function.

3. \(f\left( x \right) = ln\left( {{x^2} + 3x + 5} \right)\)

Short Answer

Expert verified

The derivative of the function is \(f'\left( x \right) = \frac{{2x + 3}}{{{x^2} + 3x + 5}}\).

Step by step solution

01

Use the derivative of logarithmic function

Rule 2: The derivative of \(\ln x\) is,

\(\frac{d}{{dx}}\left( {\ln x} \right) = \frac{1}{x}\)

02

Evaluating the derivative of given function

\(f\left( x \right) = \ln \left( {{x^2} + 3x + 5} \right)\)

Differentiate \(f\left( x \right)\)with respect to x

\(\begin{aligned}{l}\frac{{df\left( x \right)}}{{dx}} &= \frac{{d\log \left( {{x^2} + 3x + 5} \right)}}{{d\left( {{x^2} + 3x + 5} \right)}} \times \frac{{d\left( {{x^2} + 3x + 5} \right)}}{{dx}}\\f'\left( x \right) &= \frac{1}{{\left( {{x^2} + 3x + 5} \right)}} \times \left( {\frac{{d{x^2}}}{{dx}} + \frac{{d3x}}{{dx}} + \frac{{d5}}{{dx}}} \right)\\f'\left( x \right) &= \frac{1}{{\left( {{x^2} + 3x + 5} \right)}}\left( {2x + 3 + 0} \right)\\f'\left( x \right) &= \frac{{2x + 3}}{{{x^2} + 3x + 5}}\end{aligned}\)

Thus, the value of the derivative is \(f'\left( x \right) = \frac{{2x + 3}}{{{x^2} + 3x + 5}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free