Chapter 3: Q39E (page 173)
3) = x + 2{\rm{sin}}x\)
Short Answer
The required value is \(x = \left( {2n + 1} \right)\pi \pm \frac{\pi }{3},\,\,\,\,\,\,\,{\rm{for}}\,\,n \in {\rm I}\).
Chapter 3: Q39E (page 173)
3) = x + 2{\rm{sin}}x\)
The required value is \(x = \left( {2n + 1} \right)\pi \pm \frac{\pi }{3},\,\,\,\,\,\,\,{\rm{for}}\,\,n \in {\rm I}\).
All the tools & learning materials you need for study success - in one app.
Get started for free7-52: Find the derivative of the function
11. \(g\left( t \right) = \frac{1}{{{{\left( {2t + 1} \right)}^2}}}\)
Find the derivative of the function.
33. \(F\left( t \right) = {e^{t\sin 2t}}\)
Differentiate.
30. \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\)
Differentiate the function.
6.\(f\left( x \right) = \ln \left( {{{\sin }^2}x} \right)\)
53-56 Find \(y'\) and \(y''\).
55. \(y = \sqrt {{\bf{cos}}\,x} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.