Chapter 3: Q37E (page 173)
If\(f\left( x \right) = \ln \left( {x + \ln x} \right)\),find \({\bf{f'}}\left( {\bf{1}} \right)\).
Short Answer
The required answer is \(f'\left( 1 \right) = 2\).
Chapter 3: Q37E (page 173)
If\(f\left( x \right) = \ln \left( {x + \ln x} \right)\),find \({\bf{f'}}\left( {\bf{1}} \right)\).
The required answer is \(f'\left( 1 \right) = 2\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
13. \(y = {\log _8}\left( {{x^2} + 3x} \right)\)
7-52: Find the derivative of the function
8. \(f\left( x \right) = {\left( {{x^5} + 3{x^2} - x} \right)^{50}}\)
Find the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
Differentiate the function
19.\(y = \ln \left| {3 - 2{x^5}} \right|\)
1-6: Write the composite function in the form of \(f\left( {g\left( x \right)} \right)\).
(Identify the inner function \(u = g\left( x \right)\)and outer function \(y = f\left( u \right)\).) Then find the derivative \(dy/dx\).
4.\(y = \tan \left( {{x^2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.