Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the formula given in Table 6 for the derivative of each of the following functions.

(a) \({\bf{sec}}{{\bf{h}}^{ - {\bf{1}}}}\) (b) \({\bf{csc}}{{\bf{h}}^{ - {\bf{1}}}}\)

Short Answer

Expert verified

(a) \(\frac{1}{{x\sqrt {1 - {x^2}} }}\)

(b) \( - \frac{1}{{\left| x \right|\sqrt {{x^2} + 1} }}\)

Step by step solution

01

Step 1:Find answer for part (a)

Let \(y = {{\mathop{\rm sech}\nolimits} ^{ - 1}}x\), then

\({\mathop{\rm sech}\nolimits} y = x\)

Differentiate the equation \({\mathop{\rm sech}\nolimits} y = x\) with respect to x.

\(\begin{aligned} - {\mathop{\rm sech}\nolimits} y\tanh y\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}}} \right) &= 1\\\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= - \frac{1}{{{\mathop{\rm sech}\nolimits} y\tanh y}}\\ &= \frac{1}{{{\mathop{\rm sech}\nolimits} y\sqrt {1 - {{{\mathop{\rm sech}\nolimits} }^2}y} }}\\ &= \frac{1}{{x\sqrt {1 - {x^2}} }}\end{aligned}\)

Therefore, \({{\mathop{\rm sech}\nolimits} ^{ - 1}}x = \frac{1}{{x\sqrt {1 - {x^2}} }}\).

02

Find answer for part (b)

Let \(y = {{\mathop{\rm csch}\nolimits} ^{ - 1}}x\), then \({\mathop{\rm csch}\nolimits} y = x\).

Differentiate the equation \({\mathop{\rm csch}\nolimits} y = x\) with respect to x.

\(\begin{aligned} - {\mathop{\rm csch}\nolimits} y\coth y\left( {\frac{{{\rm{d}}y}}{{{\rm{d}}x}}} \right) &= 1\\\frac{{{\rm{d}}y}}{{{\rm{d}}x}} &= - \frac{1}{{{\mathop{\rm csch}\nolimits} y\coth y}}\\ &= - \frac{1}{{{\mathop{\rm csch}\nolimits} y\left( { \pm \sqrt {{{{\mathop{\rm csch}\nolimits} }^2}y + 1} } \right)}}\\ &= - \frac{1}{{\left| x \right|\sqrt {{x^2} + 1} }}\end{aligned}\)

Therefore, \({{\mathop{\rm csch}\nolimits} ^{ - 1}}x = - \frac{1}{{\left| x \right|\sqrt {{x^2} + 1} }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free