Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(f'\left( x \right)\) and \(f''\left( x \right)\).

34.\(f\left( x \right) = \frac{x}{{1 + \sqrt x }}\)

Short Answer

Expert verified

\(f'\left( x \right) = \frac{{2 + \sqrt x }}{{2 + 4\sqrt x + 2x}}\) and \(f''\left( x \right) = - \frac{{3 + 4\sqrt x + x}}{{\sqrt x {{\left( {2 + 4\sqrt x + 2x} \right)}^2}}}\).

Step by step solution

01

The quotient rule of differentiation

If a function \(h\left( x \right) = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) where \(f\) and \(g\) are both differentiable, then the derivative of \(h\left( x \right)\) is as follows:

\(\frac{{dh}}{{dx}} = \frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{g\left( x \right) \cdot \frac{d}{{dx}}\left( {f\left( x \right)} \right) - f\left( x \right) \cdot \frac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\)

02

The derivative of the given function

Differentiate \(f\left( x \right)\) using the quotient rule as follows:

\(\begin{aligned}f\left( x \right) & = \frac{x}{{1 + \sqrt x }}\\f'\left( x \right) & = \frac{{\left( {1 + \sqrt x } \right)\frac{d}{{dx}}\left( x \right) - x\frac{d}{{dx}}\left( {1 + \sqrt x } \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\\ & = \frac{{\left( {1 + \sqrt x } \right)\left( 1 \right) - x\left( {\frac{1}{{2\sqrt x }}} \right)}}{{{{\left( {1 + \sqrt x } \right)}^2}}}\\ & = \frac{{1 + \sqrt x - \frac{1}{2}\sqrt x }}{{\left( {1 + 2\sqrt x + x} \right)}}\\ & = \frac{{1 + \frac{1}{2}\sqrt x }}{{\left( {1 + 2\sqrt x + x} \right)}}\\ & = \frac{{2 + \sqrt x }}{{2\left( {1 + 2\sqrt x + x} \right)}}\end{aligned}\)

Hence, the value of \(f'\left( x \right)\) is\(\frac{{2 + \sqrt x }}{{2 + 4\sqrt x + 2x}}\).

03

The second derivative of the given function

Differentiate \(f'\left( x \right)\) using the quotient rule as follows:

\(\begin{aligned}f'\left( x \right) & = \frac{{2 + \sqrt x }}{{2 + 4\sqrt x + 2x}}\\f''\left( x \right) & = \frac{{\left( {2 + 4\sqrt x + 2x} \right)\frac{d}{{dx}}\left( {2 + \sqrt x } \right) - \left( {2 + \sqrt x } \right)\frac{d}{{dx}}\left( {2 + 4\sqrt x + 2x} \right)}}{{{{\left( {2 + 4\sqrt x + x} \right)}^2}}}\\ & = \frac{{\left( {2 + 4\sqrt x + 2x} \right)\left( {\frac{1}{{2\sqrt x }}} \right) - \left( {2 + \sqrt x } \right)\left( {\frac{4}{{2\sqrt x }} + 2} \right)}}{{{{\left( {2 + 4\sqrt x + x} \right)}^2}}}\\ & = \frac{{\frac{1}{{\sqrt x }} + 2 + \sqrt x - \frac{4}{{\sqrt x }} - 2 - 2\sqrt x }}{{{{\left( {2 + 4\sqrt x + x} \right)}^2}}}\\ & = \frac{{\frac{{ - 3 - 4\sqrt x - x}}{{\sqrt x }}}}{{{{\left( {2 + 4\sqrt x + x} \right)}^2}}}\\ & = - \frac{{3 + 4\sqrt x + x}}{{\sqrt x {{\left( {2 + 4\sqrt x + 2x} \right)}^2}}}\end{aligned}\)

Hence, the value of \(f''\left( x \right)\) is \( - \frac{{3 + 4\sqrt x + x}}{{\sqrt x {{\left( {2 + 4\sqrt x + 2x} \right)}^2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free