Put \(x = 2\sqrt 3 \) and \(y = 1\)into \(\frac{{dy}}{{dx}} = \frac{{x{y^2}}}{{\left( {4 - {y^2}} \right)\left( {y + 1} \right) - y{{\left( {y + 1} \right)}^2} - {x^2}y}}\).
\(\begin{aligned}\frac{{dy}}{{dx}} &= \frac{{x{y^2}}}{{\left( {4 - {y^2}} \right)\left( {y + 1} \right) - y{{\left( {y + 1} \right)}^2} - {x^2}y}}\\ &= \frac{{\left( {2\sqrt 3 } \right){{\left( 1 \right)}^2}}}{{\left( {4 - {{\left( 1 \right)}^2}} \right)\left( {1 + 1} \right) - \left( 1 \right){{\left( {1 + 1} \right)}^2} - {{\left( {2\sqrt 3 } \right)}^2}\left( 1 \right)}}\\ &= \frac{{2\sqrt 3 }}{{6 - 4 - 12}}\\ &= - \frac{{\sqrt 3 }}{5}\end{aligned}\)
Now put \(x = 2\sqrt 3 \), \(y = 1\) and \(\frac{{dy}}{{dx}} = 1\) into \(y - {y_1} = \frac{{dy}}{{dx}}\left( {x - {x_1}} \right)\).
\(\begin{aligned}y - 1 &= - \frac{{\sqrt 3 }}{5}\left( {x - 2\sqrt 3 } \right)\\y &= - \frac{{\sqrt 3 }}{5}x + \frac{6}{5} + 1\\y &= - \frac{{\sqrt 3 }}{5}x + \frac{{11}}{5}\end{aligned}\)
Thus, an equation of the tangent line to the curve at the given point, \(\left( {2\sqrt 3 ,1} \right)\) is \(y = - \frac{{\sqrt 3 }}{5}x + \frac{{11}}{5}\).