Chapter 3: Q32E (page 173)
For each of the following functions (i) give a definition like those in (2), (ii) sketch the graph, and (iii) find a formula similar to Equation 3.
(a) \({\bf{csc}}{{\bf{h}}^{ - {\bf{1}}}}\) (b) \({\bf{sec}}{{\bf{h}}^{ - {\bf{1}}}}\) (c) \({\bf{cot}}{{\bf{h}}^{ - {\bf{1}}}}\)
Short Answer
(a) (i) \({\mathop{\rm csch}\nolimits} y = x\)
(iii) \({{\mathop{\rm csch}\nolimits} ^{ - 1}}x = \ln \left( {\frac{1}{x} + \frac{{\sqrt {{x^2} + 1} }}{{\left| x \right|}}} \right)\)
(b) (i) \({\mathop{\rm sech}\nolimits} y = x\)
(iii) \({{\mathop{\rm sech}\nolimits} ^{ - 1}}x = \ln \left( {\frac{1}{x} + \frac{{\sqrt {1 - {x^2}} }}{x}} \right)\)
(c) (i) \(x = \coth y\)
(iii) \({\coth ^{ - 1}}x = \frac{1}{2}\ln \left( {\frac{{x + 1}}{{x - 1}}} \right)\)