Differentiate \(J\left( \theta \right)\) with respect to \(\theta \) as follows:
\(\begin{aligned}J\left( \theta \right) &= \frac{d}{{d\theta }}\left( {{{\tan }^2}\left( {n\theta } \right)} \right)\\ &= \frac{d}{{d\theta }}{\left( {\tan \left( {n\theta } \right)} \right)^2}\\ &= 2\tan \left( {n\theta } \right)\frac{d}{{d\theta }}\left( {\tan \left( {n\theta } \right)} \right)\\ &= 2\tan \left( {n\theta } \right)\left( {{{\sec }^2}\left( {n\theta } \right)} \right)\frac{d}{{d\theta }}\left( {n\theta } \right)\\ &= 2\tan \left( {n\theta } \right)\left( {{{\sec }^2}\left( {n\theta } \right)} \right)\left( n \right)\\ &= 2n\tan \left( {n\theta } \right){\sec ^2}\left( {n\theta } \right)\end{aligned}\)
Hence, the derivative of \(J\left( \theta \right)\) is \(2n\tan \left( {n\theta } \right){\sec ^2}\left( {n\theta } \right)\).