Chapter 3: Q32E (page 173)
31-36Use a linear approximation (or differentials) to estimate the given number.
32. \(\frac{1}{{4.002}}\)
Short Answer
The required value is: \(\frac{1}{{4.002}} = 0.249875\)
Chapter 3: Q32E (page 173)
31-36Use a linear approximation (or differentials) to estimate the given number.
32. \(\frac{1}{{4.002}}\)
The required value is: \(\frac{1}{{4.002}} = 0.249875\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function:
\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)
1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
33.\(f\left( x \right) = \frac{x}{{{x^2} - 1}}\)
53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.