Chapter 3: Q31E (page 173)
31-36Use a linear approximation (or differentials) to estimate the given number.
31. \({\left( {1.999} \right)^4}\)
Short Answer
The required value is: \({\left( {1.999} \right)^4} = 15.968\)
Chapter 3: Q31E (page 173)
31-36Use a linear approximation (or differentials) to estimate the given number.
31. \({\left( {1.999} \right)^4}\)
The required value is: \({\left( {1.999} \right)^4} = 15.968\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
7.\(\mathop {lim}\limits_{\theta \to \frac{\pi }{2}} \frac{{1 - sin\theta }}{{1 + cos2\theta }}\).
Differentiate the function.
16. \(p\left( v \right)=\frac{\ln v}{1-v}\)
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
Differentiate the function.
22.\(g\left( x \right) = {e^{{x^2}\ln x}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.