Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

3-34:Differentiate the function.

31. \(D\left( t \right) = \frac{{1 + 16{t^2}}}{{{{\left( {4t} \right)}^3}}}\)

Short Answer

Expert verified

The differentiation of the function is\(\frac{{dD}}{{dt}} = - \frac{{3 + 16{t^2}}}{{64{t^4}}}\).

Step by step solution

01

Differentiation of the Function

When we differentiate any function with respect to any variable present in that function, then basically we are determining the slope of that function that ranges within the domain of that variable.

02

Different rules of differentiation

The given function is \(D\left( t \right) = \frac{{1 + 16{t^2}}}{{{{\left( {4t} \right)}^3}}}\).

The Quotient rule can be explained using the general form as: \(\frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{\left( {g\left( x \right)} \right)\frac{d}{{dx}}\left( {f\left( x \right)} \right) - \left( {f\left( x \right)} \right)\frac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{\left( {g\left( x \right)} \right)}}\).

The sum rule is:\(\frac{d}{{dx}}\left( {g\left( x \right) + f\left( x \right)} \right) = \frac{d}{{dx}}\left( {g\left( x \right)} \right) + \frac{d}{{dx}}\left( {f\left( x \right)} \right)\)

And, the power rule is: \(\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\)

03

Evaluating Derivative using all these rules

Using these rules, differentiating the given function with respect to\(t\)as:

\(\begin{align}D'\left( t \right) &= \frac{d}{{dt}}\left( {\frac{{1 + 16{t^2}}}{{{{\left( {4t} \right)}^3}}}} \right)\\ &= \frac{{{{\left( {4t} \right)}^3}\frac{d}{{dt}}\left( {1 + 16{t^2}} \right) - \left( {1 + 16{t^2}} \right)\frac{d}{{dt}}{{\left( {4t} \right)}^3}}}{{{{\left\{ {{{\left( {4t} \right)}^3}} \right\}}^2}}}\\ &= \frac{{{{\left( {4t} \right)}^3}\left\{ {\frac{d}{{dt}}\left( 1 \right) + \frac{d}{{dt}}\left( {16{t^2}} \right)} \right\} - \left( {1 + 16{t^2}} \right)\frac{d}{{dt}}{{\left( {4t} \right)}^3}}}{{{{\left\{ {{{\left( {4t} \right)}^3}} \right\}}^2}}}\\ &= \frac{{{{\left( {4t} \right)}^3} \cdot \left( {32t} \right) - \left( {1 + 16{t^2}} \right) \cdot \left( {64 \cdot \left( {3{t^2}} \right)} \right)}}{{{{\left( {4t} \right)}^6}}}\\ &= \frac{{64{t^2}\left\{ {32{t^2} - 3 - 48{t^2}} \right\}}}{{{{\left( {4t} \right)}^6}}}\\ &= - \frac{{3 + 16{t^2}}}{{64{t^4}}}\end{align}\)

Hence, the derivative of the given function is \(D'\left( t \right) = - \frac{{3 + 16{t^2}}}{{64{t^4}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free