Chapter 3: Q30E (page 173)
Prove Equation 4.
Short Answer
The value of \({\cosh ^{ - 1}}x\) is \(\ln \left( {x + \sqrt {{x^2} - 1} } \right)\).
Chapter 3: Q30E (page 173)
Prove Equation 4.
The value of \({\cosh ^{ - 1}}x\) is \(\ln \left( {x + \sqrt {{x^2} - 1} } \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate.
28. \(F\left( t \right) = \frac{{At}}{{B{t^2} + C{t^3}}}\)
Find equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
53-56 Find \(y'\) and \(y''\).
55. \(y = \sqrt {{\bf{cos}}\,x} \)
Find the derivative of the function:
26. \(f\left( t \right) = {2^{{t^3}}}\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
32.\(f\left( x \right) = \sqrt x {e^x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.