Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(y'\) and \(y''\).

30. \(y = \frac{{\ln x}}{{1 + \ln x}}\)

Short Answer

Expert verified

The values of \(y'\) and \(y''\) is \(y' = \frac{1}{{x{{\left( {1 + \ln x} \right)}^2}}}\) and \(y'' = - \frac{{3 + \ln x}}{{{x^2}{{\left( {1 + \ln x} \right)}^3}}}\).

Step by step solution

01

Derivative of logarithmic functions

The derivative of a logarithmicfunctionis shown below:

  1. \(\frac{d}{{dx}}\left( {{{\log }_b}x} \right) = \frac{1}{{x\ln b}}\)
  2. \(\frac{d}{{dx}}\left( {\ln x} \right) = \frac{1}{x}\)
  3. \(\frac{d}{{dx}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dx}}\) or \(\frac{d}{{dx}}\left( {\ln g\left( x \right)} \right) = \frac{{g'\left( x \right)}}{{g\left( x \right)}}\)
02

 Step 2: Evaluate the values of  \(y'\) and \(y''\)

Use the quotient rule to evaluate the first derivative of the function as shown below:

\(\begin{aligned}{c}y'&= \frac{d}{{dx}}\left( {\frac{{\ln x}}{{1 + \ln x}}} \right)\\&= \frac{{\left( {1 + \ln x} \right)\frac{d}{{dx}}\left( {\ln x} \right) - \left( {\ln x} \right)\frac{d}{{dx}}\left( {1 + \ln x} \right)}}{{{{\left( {1 + \ln x} \right)}^2}}}\\&= \frac{{\left( {1 + \ln x} \right)\left( {\frac{1}{x}} \right) - \left( {\ln x} \right)\left( {\frac{1}{x}} \right)}}{{{{\left( {1 + \ln x} \right)}^2}}}\\&= \frac{{\frac{{1 + \ln x - \ln x}}{x}}}{{{{\left( {1 + \ln x} \right)}^2}}}\\&= \frac{1}{{x{{\left( {1 + \ln x} \right)}^2}}}\end{aligned}\)

The value of \(y'\) is \(y' = \frac{1}{{x{{\left( {1 + \ln x} \right)}^2}}}\).

Evaluate the second derivative of the function as shown below:

The value of \(y''\) is \(y'' = - \frac{{3 + \ln x}}{{{x^2}{{\left( {1 + \ln x} \right)}^3}}}\).

Thus, the values of \(y'\) and \(y''\) is \(y' = \frac{1}{{x{{\left( {1 + \ln x} \right)}^2}}}\) and \(y'' = - \frac{{3 + \ln x}}{{{x^2}{{\left( {1 + \ln x} \right)}^3}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free