Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the derivative of the function:

\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)

Short Answer

Expert verified

The derivative of

\(f\left( z \right) = {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\)

Step by step solution

01

The quotient rule of differentiation

If a function \(h\left( x \right) = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) and \(f\), \(g\) are both differentiable, then the derivative of \(h\left( x \right)\) is as follows:

\(\frac{{dh}}{{dx}} = \frac{d}{{dx}}\left( {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \frac{{g\left( x \right) \cdot \frac{d}{{dx}}\left( {f\left( x \right)} \right) - f\left( x \right) \cdot \frac{d}{{dx}}\left( {g\left( x \right)} \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}\)

02

The chain rule

If \(g\) is differentiable at \(x\) and \(f\) is differentiable at \(g\left( x \right)\), then the composite function \(F = f \circ g\) defined by \(F\left( x \right) = f\left( {g\left( x \right)} \right)\) is differentiable at \(x\) and \(F'\) is given by the product \(F'\left( x \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)\). In Leibniz notation, if \(y = f\left( u \right)\) and \(u = g\left( x \right)\) are both differentiable functions, then \(\frac{{dy}}{{dx}} = \frac{{dy}}{{du}} \cdot \frac{{du}}{{dx}}\).

03

The derivative of the given function

Differentiate \(f\left( z \right)\) with respect to \(z\) as follows:

\(\begin{aligned} f'\left( z \right) &= \frac{d}{{dz}}\left[ {{e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}} \right) \\ &= {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\frac{d}{{dz}}\left( {\frac{z}{{z - 1}}} \right) \\ &= {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\left( {\frac{{\left( {z - 1} \right)\frac{d}{{dz}}\left( z \right) - z\frac{d}{{dz}}\left( {z - 1} \right)}}{{{{\left( {z - 1} \right)}^2}}}} \right) \\ &= {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\left( {\frac{{\left( {z - 1} \right)\left( 1 \right) - z\left( 1 \right)}}{{{{\left( {z - 1} \right)}^2}}}} \right)\end{aligned}\)

Solve the above equation further,

\(\begin{aligned}f'\left( z \right) &= {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}\left( {\frac{{z - 1 - z}}{{{{\left( {z - 1} \right)}^2}}}} \right)\\ &= {e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right. } {\left( {z - 1} \right)}}}}\left( {\frac{{ - 1}}{{{{\left( {z - 1} \right)}^2}}}} \right)\\ &= - \frac{{{e^{{z \mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right. } {\left( {z - 1} \right)}}}}}}{{{{\left( {z - 1} \right)}^2}}}\end{aligned}\)

Hence, the derivative of \(f\left( z \right)\) is \( - \frac{{{e^{{z\mathord{\left/{\vphantom {z {\left( {z - 1} \right)}}} \right.} {\left( {z - 1} \right)}}}}}}{{{{\left( {z - 1} \right)}^2}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free