Chapter 3: Q30E (page 173)
Differentiate.
30. \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\)
Short Answer
The answer is \(f'\left( x \right) = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\).
Chapter 3: Q30E (page 173)
Differentiate.
30. \(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\)
The answer is \(f'\left( x \right) = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(f'\left( x \right)\) and \(f''\left( x \right)\).
34.\(f\left( x \right) = \frac{x}{{1 + \sqrt x }}\)
Find equations of the tangent line and normal line to the given curve at the specific point.
37. \(y = \frac{{3x}}{{1 + 5{x^2}}}\), \(\left( {1,\frac{1}{2}} \right)\)
27-34: Explain using theorem 4,5,7, and 9, why the function is continuous at every number in its domain. State the domain.
34. \(g\left( t \right) = {\cos ^{ - 1}}\left( {{e^t} - 1} \right)\)
Differentiate the function.
21.\(y = \ln \left( {{e^{ - x}} + x{e^{ - x}}} \right)\)
Use the method of Exercise 57 to compute \(Q'\left( {\bf{0}} \right)\), where
\(Q\left( x \right) = \frac{{{\bf{1}} + x + {x^{\bf{2}}} + x{e^x}}}{{{\bf{1}} - x + {x^{\bf{2}}} - x{e^x}}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.