Chapter 3: Q30E (page 173)
3–34: Differentiate the function.
30. \(G\left( q \right) = {\left( {1 + {q^{ - 1}}} \right)^2}\)
Short Answer
Derivative of the above function is \( - 2\left( {{q^{ - 2}} + {q^{ - 3}}} \right)\).
Chapter 3: Q30E (page 173)
3–34: Differentiate the function.
30. \(G\left( q \right) = {\left( {1 + {q^{ - 1}}} \right)^2}\)
Derivative of the above function is \( - 2\left( {{q^{ - 2}} + {q^{ - 3}}} \right)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
1. \(\mathop {lim}\limits_{x \to 1} \frac{{{x^2} - 1}}{{{x^2} - x}}\)
7-52: Find the derivative of the function
9. \(f\left( x \right) = \sqrt {5x + 1} \)
Find equations of the tangent line to the given curve at the specific point.
36. \(y = \frac{{1 + x}}{{1 + {e^x}}}\), \(\left( {0,\frac{1}{2}} \right)\)
Find the derivative of the function:
21. \(F\left( x \right) = {\left( {4x + 5} \right)^3}{\left( {{x^2} - 2x + 5} \right)^4}\)
Find the derivative of the function.
20. \(A\left( r \right) = \sqrt r \cdot {e^{{r^2} + 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.