\(\left( {2,\sqrt 2 } \right)\)
Put \(x = 2\) and \(y = \sqrt 2 \)into\(\frac{{dy}}{{dx}} = \frac{{3{x^2} + {y^2}}}{{2y\left( {6 - x} \right)}}\).
\(\begin{aligned}\frac{{dy}}{{dx}} &= \frac{{3{{\left( 2 \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}{{2\left( {\sqrt 2 } \right)\left( {6 - 2} \right)}}\\ &= \frac{{12 + 2}}{{2\sqrt 2 \cdot 4}}\\ &= \frac{7}{{4\sqrt 2 }}\end{aligned}\)
Now put \(x = 2\), \(y = \sqrt 2 \) and \(\frac{{dy}}{{dx}} = \frac{7}{{4\sqrt 2 }}\) into \(y - {y_1} = \frac{{dy}}{{dx}}\left( {x - {x_1}} \right)\).
\(\begin{aligned}y - \sqrt 2 &= \frac{7}{{4\sqrt 2 }}\left( {x - 2} \right)\\y &= \frac{7}{{4\sqrt 2 }}x - \frac{7}{{2\sqrt 2 }} + \frac{4}{{2\sqrt 2 }}\\y &= \frac{7}{{4\sqrt 2 }}x - \frac{3}{{2\sqrt 2 }}\end{aligned}\)
Thus, an equation of the tangent line to the curve at the given point, \(\left( {2,\sqrt 2 } \right)\) is \(y = \frac{7}{{4\sqrt 2 }}x - \frac{3}{{2\sqrt 2 }}\).