Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(y'\) and \(y''\).

29. \(y = \sqrt x \ln x\)

Short Answer

Expert verified

The values are \(y' = \frac{{2 + \ln x}}{{2\sqrt x }}\) and \(y'' = - \frac{{\ln x}}{{4x\sqrt x }}\).

Step by step solution

01

Derivative of logarithmic functions

The derivative of a logarithmicfunctionis shown below:

  1. \(\frac{d}{{dx}}\left( {{{\log }_b}x} \right) = \frac{1}{{x\ln b}}\)
  2. \(\frac{d}{{dx}}\left( {\ln x} \right) = \frac{1}{x}\)
  3. \(\frac{d}{{dx}}\left( {\ln u} \right) = \frac{1}{u}\frac{{du}}{{dx}}\) or \(\frac{d}{{dx}}\left( {\ln g\left( x \right)} \right) = \frac{{g'\left( x \right)}}{{g\left( x \right)}}\)
02

Evaluate the values of \(y'\) and \(y''\)

Use the product rule to evaluate the first derivative of the function as shown below:

\(\begin{aligned}{c}y'&= \frac{d}{{dx}}\left( {\sqrt x \ln x} \right)\\&= \left( {\sqrt x } \right) \cdot \frac{d}{{dx}}\left( {\ln x} \right) + \left( {\ln x} \right) \cdot \frac{d}{{dx}}\left( {\sqrt x } \right)\\&= \left( {\sqrt x } \right) \cdot \left( {\frac{1}{x}} \right) + \left( {\ln x} \right) \cdot \left( {\frac{1}{{2\sqrt x }}} \right)\\ &= \frac{1}{{\sqrt x }} + \frac{{\ln x}}{{2\sqrt x }}\\ &= \frac{{2 + \ln x}}{{2\sqrt x }}\end{aligned}\)

The value of \(y'\) is \(y' = \frac{{2 + \ln x}}{{2\sqrt x }}\).

Use quotient rule to evaluate the second derivative of the function as shown below:

\(\begin{aligned}{c}y''&= \frac{d}{{dx}}\left( {\frac{{2 + \ln x}}{{2\sqrt x }}} \right)\\&= \frac{{2\sqrt x \left( {\frac{1}{x}} \right) - \left( {2 + \ln x} \right)\left( {\frac{1}{{\sqrt x }}} \right)}}{{{{\left( {2\sqrt x } \right)}^2}}}\\&= \frac{{\left( {\frac{2}{{\sqrt x }}} \right) - \left( {\frac{{2 + \ln x}}{{\sqrt x }}} \right)}}{{4x}}\\&= \frac{{\frac{{2 - \left( {2 + \ln x} \right)}}{{\sqrt x }}}}{{4x}}\\&= \frac{{2 - 2 - \ln x}}{{\sqrt x \left( {4x} \right)}}\\&= - \frac{{\ln x}}{{4x\sqrt x }}\end{aligned}\)

The value of \(y''\) is \(y''= - \frac{{\ln x}}{{4x\sqrt x }}\).

Thus, the values of \(y'\) and \(y''\) is \(y' = \frac{{2 + \ln x}}{{2\sqrt x }}\) and \(y'' = - \frac{{\ln x}}{{4x\sqrt x }}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free