Chapter 3: Q29E (page 173)
Find the derivative of the function:
29. \(r\left( t \right) = {10^{2\sqrt t }}\)
Short Answer
The derivative of \(r\left( t \right)\) is \(\frac{{\left( {\ln 10} \right){{10}^{2\sqrt t }}}}{{\sqrt t }}\).
Chapter 3: Q29E (page 173)
Find the derivative of the function:
29. \(r\left( t \right) = {10^{2\sqrt t }}\)
The derivative of \(r\left( t \right)\) is \(\frac{{\left( {\ln 10} \right){{10}^{2\sqrt t }}}}{{\sqrt t }}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
1-22 Differentiate.
10. \(g\left( \theta \right) = {e^\theta }\left( {\tan \theta - \theta } \right)\)
Differentiate the function.
14. \(y = {\log _{10}}\sec x\)
Find the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.