Chapter 3: Q29E (page 173)
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
Short Answer
The answer is \(f'\left( x \right) = \frac{{2cx}}{{{{\left( {{x^2} + c} \right)}^2}}}\)
Chapter 3: Q29E (page 173)
Differentiate.
29. \(f\left( x \right) = \frac{x}{{x + \frac{c}{x}}}\)
The answer is \(f'\left( x \right) = \frac{{2cx}}{{{{\left( {{x^2} + c} \right)}^2}}}\)
All the tools & learning materials you need for study success - in one app.
Get started for free53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
1-22 Differentiate.
10. \(g\left( \theta \right) = {e^\theta }\left( {\tan \theta - \theta } \right)\)
Find \(f'\left( x \right)\) and \(f''\left( x \right)\).
32.\(f\left( x \right) = \sqrt x {e^x}\)
Find equations of the tangent line to the given curve at the specific point.
35. \(y = \frac{{{x^2}}}{{1 + x}}\), \(\left( {1,\frac{1}{2}} \right)\)
Find the derivative of the function.
42. \(y = {e^{{\rm{sin}}2x}} + {\rm{sin}}\left( {{e^{2x}}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.