Chapter 3: Q28E (page 173)
Show that \(\frac{d}{{dx}}\ln \sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} = \csc x\).
Short Answer
It is proved that \(\frac{d}{{dx}}\left( {\ln \sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} } \right) = \csc x\).
Chapter 3: Q28E (page 173)
Show that \(\frac{d}{{dx}}\ln \sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} = \csc x\).
It is proved that \(\frac{d}{{dx}}\left( {\ln \sqrt {\frac{{1 - \cos x}}{{1 + \cos x}}} } \right) = \csc x\).
All the tools & learning materials you need for study success - in one app.
Get started for free1-22 Differentiate.
15.\(y = \frac{x}{{2 - \tan x}}\)
Find the derivative of the function.
18. \(f\left( t \right) = t\sin \pi t\)
Find the derivative of the function
19. \(f\left( t \right) = {e^{at}}\sin bt\)
1-22: Differentiate.
6. \(g\left( x \right) = 3x + {x^2}\cos x\)
Differentiate the function.
10. \(g\left( t \right) = \sqrt {1 + \ln t} \)
(g\left( t \right) = \sqrt {1 + \ln t}
What do you think about this solution?
We value your feedback to improve our textbook solutions.