Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the formulas given in Table 1 for the derivatives of the functions (a) cosh (b) tanh (c) csch (d) sech and (e) coth

Short Answer

Expert verified

(a) It is proved that derivative of \(\cosh x\) is \(\sinh x\).

(b) It is proved that derivative of \(\tanh x\) is \({{\mathop{\rm sech}\nolimits} ^2}x\).

(c) It is proved that derivative of \({\mathop{\rm csch}\nolimits} x\) is \( - {\mathop{\rm csch}\nolimits} x\coth x\).

(d) It is proved that derivative of \({\mathop{\rm sech}\nolimits} x\) is \( - {\mathop{\rm sech}\nolimits} x\tanh x\).

(e) It is proved that derivative of \(\coth x\) is \( - {{\mathop{\rm csch}\nolimits} ^2}x\).

Step by step solution

01

Step 1:Find the answer for part (a)

Find the derivative of the function \(\cosh x\).

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\cosh x} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{1}{2}\left( {{e^x} + {e^{ - x}}} \right)} \right)\\ &= \frac{1}{2}\left( {{e^x} - {e^{ - x}}} \right)\\ &= \sinh x\end{aligned}\)

It is proved that derivative of \(\cosh x\) is \(\sinh x\).

02

 Step 2: Find the answer for part (b)

Find the derivative of the function \(\tanh x\).

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\tanh x} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{\sinh x}}{{\cosh x}}} \right)\\ &= \frac{{\cosh x\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\sinh x} \right) - \sinh x\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\cosh x} \right)}}{{{{\cosh }^2}x}}\\ &= \frac{{{{\cosh }^2}x - {{\sinh }^2}x}}{{{{\cosh }^2}x}}\\ &= \frac{1}{{{{\cosh }^2}x}}\\ &= {{\mathop{\rm sech}\nolimits} ^2}x\end{aligned}\)

It is proved that derivative of \(\tanh x\) is \({{\mathop{\rm sech}\nolimits} ^2}x\).

03

Find the answer for part (c)

Find the derivative of the function \({\mathop{\rm csch}\nolimits} x\).

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{\mathop{\rm csch}\nolimits} x} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{1}{{\sinh x}}} \right)\\ &= \frac{{0 - 1\left( {\cosh x} \right)}}{{{{\sinh }^2}x}}\\ &= - {\mathop{\rm csch}\nolimits} x\coth x\end{aligned}\)

It is proved that derivative of \({\mathop{\rm csch}\nolimits} x\) is \( - {\mathop{\rm csch}\nolimits} x\coth x\).

04

Find the answer for part (d)

Find the derivative of \({\mathop{\rm sech}\nolimits} x\).

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {{\mathop{\rm sech}\nolimits} x} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{1}{{\cosh x}}} \right)\\ &= \frac{{ - \sinh x}}{{{{\cosh }^2}x}}\\ &= - {\mathop{\rm sech}\nolimits} x\tanh x\end{aligned}\)

It is proved that derivative of \({\mathop{\rm sech}\nolimits} x\) is \( - {\mathop{\rm sech}\nolimits} x\tanh x\).

05

Find the answer for part (e)

Find the derivative of \(\coth x\).

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\coth x} \right) &= \frac{{\rm{d}}}{{{\rm{d}}x}}\left( {\frac{{\cosh x}}{{\sinh x}}} \right)\\ &= \frac{{\sinh x\left( {\sinh x} \right) - \cosh x\left( {\cosh x} \right)}}{{{{\sinh }^2}x}}\\&= \frac{{{{\sinh }^2}x - {{\cosh }^2}x}}{{{{\sinh }^2}x}}\\ &= - \frac{1}{{{{\sinh }^2}x}}\\ &= - {{\mathop{\rm csch}\nolimits} ^2}x\end{aligned}\)

It is proved that derivative of \(\coth x\) is \( - {{\mathop{\rm csch}\nolimits} ^2}x\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free