Chapter 3: Q28E (page 173)
Differentiate.
28. \(F\left( t \right) = \frac{{At}}{{B{t^2} + C{t^3}}}\)
Short Answer
The answer is \(F'\left( t \right) = - \frac{{A\left( {B + 2Ct} \right)}}{{{t^2}{{\left( {B + Ct} \right)}^2}}}\)
Chapter 3: Q28E (page 173)
Differentiate.
28. \(F\left( t \right) = \frac{{At}}{{B{t^2} + C{t^3}}}\)
The answer is \(F'\left( t \right) = - \frac{{A\left( {B + 2Ct} \right)}}{{{t^2}{{\left( {B + Ct} \right)}^2}}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
Differentiate the function.
14. \(y = {\log _{10}}\sec x\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
Find the derivative of the function
19. \(f\left( t \right) = {e^{at}}\sin bt\)
Find the derivative of the function.
38. \(g\left( x \right) = {e^{ - x}}{\rm{cos}}\left( {{x^2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.