Chapter 3: Q25E (page 173)
Find the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
Short Answer
The derivative of \(y\) is \(\left( {{{\sec }^2}\theta } \right){e^{\tan \theta }}\).
Chapter 3: Q25E (page 173)
Find the derivative of the function:
25. \(y = {e^{\tan \theta }}\)
The derivative of \(y\) is \(\left( {{{\sec }^2}\theta } \right){e^{\tan \theta }}\).
All the tools & learning materials you need for study success - in one app.
Get started for free1-22 Differentiate.
10. \(g\left( \theta \right) = {e^\theta }\left( {\tan \theta - \theta } \right)\)
Find the derivative of the function
15. \(g\left( x \right) = {e^{{x^2} - x}}\)
Differentiate the function.
10. \(g\left( t \right) = \sqrt {1 + \ln t} \)
(g\left( t \right) = \sqrt {1 + \ln t}
Find the derivative of the function.
37. \(f\left( x \right) = {\rm{sin}}x{\rm{cos}}\left( {1 - {x^2}} \right)\)
Find the derivative of the function.
34. \(F\left( t \right) = \frac{{{t^2}}}{{\sqrt {{t^3} + 1} }}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.