Chapter 3: Q24E (page 173)
Differentiate the function.
24.\(y = \ln \sqrt {\frac{{1 + 2x}}{{1 - 2x}}} \)
Short Answer
The derivative of the function is \(y' = \frac{1}{{1 + 2x}} + \frac{1}{{1 - 2x}}\).
Chapter 3: Q24E (page 173)
Differentiate the function.
24.\(y = \ln \sqrt {\frac{{1 + 2x}}{{1 - 2x}}} \)
The derivative of the function is \(y' = \frac{1}{{1 + 2x}} + \frac{1}{{1 - 2x}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
17. \(T\left( z \right) = {2^x}{\log _2}z\)
Find the derivative of the function.
18. \(f\left( t \right) = t\sin \pi t\)
1-22 Differentiate.
8. \(y = \sin \theta \cos \theta \)
Differentiate the function.
14. \(y = {\log _{10}}\sec x\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.