Chapter 3: Q24E (page 173)
24: Show that \(\frac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\).
Short Answer
It is proved that \(\frac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\).
Chapter 3: Q24E (page 173)
24: Show that \(\frac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\).
It is proved that \(\frac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x\).
All the tools & learning materials you need for study success - in one app.
Get started for free7-52: Find the derivative of the function
8. \(f\left( x \right) = {\left( {{x^5} + 3{x^2} - x} \right)^{50}}\)
Find the derivative of the function.
17. \(y = {x^2}{e^{ - 3x}}\)
Find the derivative of the function.
35. \(G\left( x \right) = {4^{C/x}}\)
53-56 Find \(y'\) and \(y''\).
54. \(y = {\left( {{\bf{1}} + \sqrt x } \right)^{\bf{3}}}\)
Find the derivative of the function:
22. \(G\left( z \right) = {\left( {1 - 4z} \right)^2}\sqrt {{z^2} + 1} \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.