Chapter 3: Q23E (page 173)
23: Show that \(\frac{d}{{dx}}\left( {\csc x} \right) = - \csc x\cot x\).
Short Answer
It is proved that \(\frac{d}{{dx}}\left( {\csc x} \right) = - \csc x\cot x\).
Chapter 3: Q23E (page 173)
23: Show that \(\frac{d}{{dx}}\left( {\csc x} \right) = - \csc x\cot x\).
It is proved that \(\frac{d}{{dx}}\left( {\csc x} \right) = - \csc x\cot x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function.
17. \(T\left( z \right) = {2^x}{\log _2}z\)
7-52: Find the derivative of the function.
13. \(f\left( \theta \right) = \cos \left( {{\theta ^2}} \right)\)
Find the derivative of the function:
27. \(g\left( u \right) = {\left( {\frac{{{u^3} - 1}}{{{u^3} + 1}}} \right)^8}\)
Find the derivative of the function:
28. \(s\left( t \right) = \sqrt {\frac{{1 + \sin t}}{{1 + \cos t}}} \)
Differentiate the function.
9.\(g\left( x \right) = \ln \left( {x{e^{ - 2x}}} \right)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.