Chapter 3: Q22E (page 173)
Prove the identity.
22. \(\frac{{{\bf{1}} + {\bf{tanh}}\,x}}{{{\bf{1}} - {\bf{tanh}}\,x}} = {e^{{\bf{2}}x}}\)
Short Answer
The given identity is true.
Chapter 3: Q22E (page 173)
Prove the identity.
22. \(\frac{{{\bf{1}} + {\bf{tanh}}\,x}}{{{\bf{1}} - {\bf{tanh}}\,x}} = {e^{{\bf{2}}x}}\)
The given identity is true.
All the tools & learning materials you need for study success - in one app.
Get started for freeDifferentiate the function
19.\(y = \ln \left| {3 - 2{x^5}} \right|\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
5. \(y = {e^{\sqrt x }}\)
57-60 Find an equation of the tangent line to the curve at the given point.
58. \(y = \sqrt {{\bf{1}} + {x^{\bf{3}}}} \), \(\left( {{\bf{2}},{\bf{3}}} \right)\)
Find the derivative of the function.
42. \(y = {e^{{\rm{sin}}2x}} + {\rm{sin}}\left( {{e^{2x}}} \right)\)
Find the derivative of the function.
40. \(G\left( z \right) = {\left( {1 + {\rm{co}}{{\rm{s}}^2}z} \right)^3}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.