Consider the equation, \({e^{\frac{x}{y}}} = x - y\). Differentiate both the sides of the equation w.r.t. \(x\) and simplify by using quotient rule.
\(\begin{aligned}\frac{d}{{dx}}\left( {{e^{\frac{x}{y}}}} \right) &= \frac{d}{{dx}}\left( {x - y} \right)\\{e^{\frac{x}{y}}}\frac{d}{{dx}}\left( {\frac{x}{y}} \right) &= 1 - \frac{{dy}}{{dx}}\\{e^{\frac{x}{y}}}\left( {\frac{{y\left( 1 \right) - x\frac{{dy}}{{dx}}}}{{{y^2}}}} \right) &= 1 - \frac{{dy}}{{dx}}\\{e^{\frac{x}{y}}} \cdot \left( {\frac{1}{y}} \right) - \frac{{x{e^{\frac{x}{y}}}}}{{{y^2}}} \cdot \frac{{dy}}{{dx}} &= 1 - \frac{{dy}}{{dx}}\\\frac{{dy}}{{dx}} - \frac{{x{e^{\frac{x}{y}}}}}{{{y^2}}} \cdot \frac{{dy}}{{dx}} &= 1 - {e^{\frac{x}{y}}} \cdot \left( {\frac{1}{y}} \right)\end{aligned}\)
Furthermore,
\(\begin{aligned}\frac{{dy}}{{dx}}\left( {1 - \frac{{x{e^{\frac{x}{y}}}}}{{{y^2}}}} \right) &= \frac{{y - {e^{\frac{x}{y}}}}}{y}\\\frac{{dy}}{{dx}} &= \frac{{\frac{{y - {e^{\frac{x}{y}}}}}{y}}}{{1 - \frac{{x{e^{\frac{x}{y}}}}}{{{y^2}}}}}\\\frac{{dy}}{{dx}} &= \frac{{y\left( {y - {e^{\frac{x}{y}}}} \right)}}{{{y^2} - x{e^{\frac{x}{y}}}}}\end{aligned}\)
Thus, \(\frac{{dy}}{{dx}} = \frac{{y\left( {y - {e^{\frac{x}{y}}}} \right)}}{{{y^2} - x{e^{\frac{x}{y}}}}}\).