Chapter 3: Q21E (page 173)
3-34: Differentiate the function
21. \(y = 3{e^x} + \frac{4}{{\sqrt[3]{x}}}\)
Short Answer
The derivative of the function is \(f'\left( x \right) = 3{e^x} - \frac{4}{{3x\sqrt[3]{x}}}\).
Chapter 3: Q21E (page 173)
3-34: Differentiate the function
21. \(y = 3{e^x} + \frac{4}{{\sqrt[3]{x}}}\)
The derivative of the function is \(f'\left( x \right) = 3{e^x} - \frac{4}{{3x\sqrt[3]{x}}}\).
All the tools & learning materials you need for study success - in one app.
Get started for free57-60 Find an equation of a tangent line to the curve at the given point.
57. \(y = {{\bf{2}}^x}\), \(\left( {{\bf{0}},{\bf{1}}} \right)\)
Differentiate the function.
8. \(y = \frac{1}{{\ln x}}\)
Find the derivative of the function.
38. \(g\left( x \right) = {e^{ - x}}{\rm{cos}}\left( {{x^2}} \right)\)
53-56 Find \(y'\) and \(y''\).
56. \(y = {e^{{e^x}}}\)
Write the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.