Chapter 3: Q20E (page 173)
Prove the identity.
20. \(\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\)
Short Answer
It is proved that \(\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\).
Chapter 3: Q20E (page 173)
Prove the identity.
20. \(\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\)
It is proved that \(\cosh 2x = {\cosh ^2}x + {\sinh ^2}x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the composite function in the form \(f\left( {g\left( x \right)} \right)\). (Identify the inner function \(u = g\left( x \right)\) and the outer function \(y = f\left( u \right)\).) Then find the derivative \(\frac{{dy}}{{dx}}\).
6. \(y = \sqrt(3){{{e^x} + 1}}\)
1–38 ■ Find the limit. Use l’Hospital’s Rule where appropriate. If there is a more elementary method, consider using it. If l’Hospital’s Rule doesn’t apply, explain why.
3.\(\mathop {lim}\limits_{x \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \frac{{cosx}}{{1 - sinx}}\).
7-52: Find the derivative of the function
10. \(f\left( x \right) = \frac{1}{{\sqrt(3){{{x^2} - 1}}}}\)
Find the derivative of the function:
21. \(F\left( x \right) = {\left( {4x + 5} \right)^3}{\left( {{x^2} - 2x + 5} \right)^4}\)
Find the derivative of the function.
37. \(f\left( x \right) = {\rm{sin}}x{\rm{cos}}\left( {1 - {x^2}} \right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.